An inserted region of leucyl-tRNA synthetase plays a critical role in group I intron splicing.
نویسندگان
چکیده
Yeast mitochondrial leucyl-tRNA synthetase (LeuRS) binds to the bI4 intron and collaborates with the bI4 maturase to aid excision of the group I intron. Deletion analysis isolated the inserted LeuRS CP1 domain as a critical factor in the protein's splicing activity. Protein fragments comprised of just the LeuRS CP1 region rescued complementation of a yeast strain that expressed a splicing-defective LeuRS. Three-hybrid analysis determined that these CP1-containing LeuRS fragments, ranging from 214 to 375 amino acids, bound to the bI4 intron. In each case, interactions with only the LeuRS protein fragment specifically stimulated bI4 intron splicing activity. Substitution of a homologous CP1 domain from isoleucyl-tRNA synthetase or mutation within the LeuRS CP1 region of the smallest protein fragment abolished RNA binding and splicing activity. The CP1 domain is best known for its amino acid editing activity. However, these results suggest that elements within the LeuRS CP1 domain also play a novel role, independent of the full-length tRNA synthetase, in binding the bI4 group I intron and facilitating its self-splicing activity.
منابع مشابه
The bI4 group I intron binds directly to both its protein splicing partners, a tRNA synthetase and maturase, to facilitate RNA splicing activity.
The imported mitochondrial leucyl-tRNA synthetase (NAM2p) and a mitochondrial-expressed intron-encoded maturase protein are required for splicing the fourth intron (bI4) of the yeast cob gene, which expresses an electron transfer protein that is essential to respiration. However, the role of the tRNA synthetase, as well as the function of the bI4 maturase, remain unclear. As a first step toward...
متن کاملA tyrosyl-tRNA synthetase binds specifically to the group I intron catalytic core.
The Neurospora CYT-18 protein, the mitochondrial tyrosyl-tRNA synthetase, functions in splicing group I introns in mitochondria. Here, we show that CYT-18 binds strongly to diverse group I introns that have minimal sequence homology and recognizes highly conserved structural features of the catalytic core of these introns. Inhibition experiments indicate that the intron RNA and tRNA(Tyr) compet...
متن کاملA Tyrosyl-tRNA Synthetase Recognizes a Conserved tRNA-like Structural Motif in the Group I Intron Catalytic Core
The Neurospora crassa mitochondrial (mt) tyrosyl-tRNA synthetase (CYT-18 protein) functions in splicing group I introns, in addition to aminoacylating tRNA(Tyr). Here, we compared the CYT-18 binding sites in the N. crassa mt LSU and ND1 introns with that in N. crassa mt tRNA(Tyr) by constructing three-dimensional models based on chemical modification and RNA footprinting data. Remarkably, super...
متن کاملtRNA-like recognition of group I introns by a tyrosyl-tRNA synthetase.
The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) functions in splicing group I introns by promoting the formation of the catalytically active RNA structure. Previous work suggested that CYT-18 recognizes a conserved tRNA-like structure of the group I intron catalytic core. Here, directed hydroxyl-radical cleavage assays show that the nucleotide-binding fold and C-ter...
متن کاملEvolution of RNA-Protein Interactions: Non-Specific Binding Led to RNA Splicing Activity of Fungal Mitochondrial Tyrosyl-tRNA Synthetases
The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (mtTyrRS; CYT-18 protein) evolved a new function as a group I intron splicing factor by acquiring the ability to bind group I intron RNAs and stabilize their catalytically active RNA structure. Previous studies showed: (i) CYT-18 binds group I introns by using both its N-terminal catalytic domain and flexibly attached C-terminal antico...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 21 24 شماره
صفحات -
تاریخ انتشار 2002